互联网若离开实体工业会成空中楼阁


  目前,围绕“互联网+”、“中国制造2025”、“工业互联网”、“物联网”和“工业4.0”的观点纷繁多样,我愿意结合今年的政府工作报告和《中国制造业发展纲要(2015-2025)》,谈一谈我对“互联网+”与提升中国经济竞争力关系的看法。

  “互联网+”是哪个互联网?

  首先,起主导作用的是工业制造业,而非消费级互联网。中央政府提出“互联网+”的概念之后,从官方到民间都对互联网公司投入了巨大关注,风投等资本更是热情高涨。但消费级互联网能否在中国经济结构性调整、产业升级中起到一招定乾坤的作用,仍需探讨。

  正如中国工程院邬贺铨院士所说:“互联网能不能促进工业制造业核心竞争力的提高?能。但我们需要的是智能化工业互联网,而不仅是一般意义上的消费互联网。”

  差别何在?以建筑行业为例,建筑信息模型(BIM,Building Information Model)可以在动工之前,从设计开始,预算、施工、竣工到维护的全生命周期都可以测算、评估。从每一个螺丝钉、每一根钢筋、每一扇门窗,到水泥用量、灌注顺序、土层水文分析,都可以提前建模,实现精细管理。从时间上,这可以大大缩短工期,提高效率;从空间上,可以围绕BIM进行全球化的生产协作,完成产业链的高度整合。

  未来三年的发展,将会决定未来十年的国家竞争力,把数据驱动的工业互联网当作未来的国家基础设施工程,毫不为过。

  “互联网+”的“+”是何涵义?

  互联化不是结果而是手段,“互联网+”之后打通价值链上下游的数据,仍远不能实现目标,关键在于最后的一步“智能化”——对实时数据进行分析的大数据技术,在进行大数据分析之后产生“洞察”,并实现实时决策——这才是终极目标。

  根据IBM价值研究院的报告,今天90%以上的实时数据只是被静态地存储了起来,并没有经过分析,但60%以上的实时数据只有在实时的决策中有价值,之后便变得毫无意义。没有洞察的数据,只是静态的数据,只能实现“描述性分析”。这属于大数据分析的第一阶段,大多应用于消费互联网。

  如果能够根据历史性数据进行“预测性分析”,在数据中发现规律、形成洞察,就能够更加接近客观真相。根据分析数据呈现的规律,我们可以在纽约预测犯罪的发生,在沈阳预测交通拥堵,知道一个城市何时出现用电高峰可能导致全城停电,预测米兰时装周的流行趋势,了解小德在红土、草地、硬地上击球的力量和速度规律,蜂群迁移的方向,流行感冒暴发的规律。

  比“描述性分析”和“预测性分析”更重要的是“指导性分析”。因为对于很多决策者来说,相对于描述过去的事实和预测可能的规律,更重要的是如何在多变、不确定、动荡的当下作出正确的决策。

  去年APEC会议期间北京上空惊现“APEC蓝”,就是指导性分析的结果。IBM大数据分析和认知计算精确地测算出,在11月4日到5日和11月9日到11日两个时间段内,北京会遭受严重的空气污染,污染源分别来自北京西南周边地区和北京东南周边地区。这一情况提前三天就被预测出来,政府因此实现了小规模、分时段的管控,保障了会议期间北京的空气质量。

  智能化决策在全世界绝大多数行业,还远未实现,这正是“互联网+”下一步的远景目标。

  “互联网+”的三个挑战

  实现“互联网+”,靠的不是想象,而是技术能力和人才。对中国而言,未来的挑战来自三个方面。

  首先,数字技术与传统工业技术的深度整合——数字物理系统(CPS,Cyber Physical System),对信息安全的要求极高,如果出现安全问题,不仅会带来巨大经济损失,也会危及国家利益和人民生命。

  其次,在确保信息安全性的前提下开放标准。这是建设强大的智能化工业互联网的关键。在“互联网+”深入到各行各业的过程中,最大问题是国家、行业、企业以邻为壑,各自为战,通过独立标准和封闭技术系统阻挡网络联通和数据流动,人为地割裂本来应该开放的工业互联网。

  最后,中国面临人才窘境:既懂得制造业的工艺流程、核心技术又懂得IT技术的跨界人才极度匮乏。

  在中国,传统企业向“互联网+”或者“工业4.0”转型,还需要深度的人才开发和研发投入,这种改变才会发生。