大数据与ITSS在企业中的应用


 

 

 

企业要拥抱大数据,大数据可以帮助企业从数据应用中创造价值。

对于扑面而来的大数据时代,有不少的企业感到困惑和迷茫,比如我们的企业到底能积累什么样的数据,如何发挥这些数据的价值,面向未来的商业创新又需要增加或抓取哪些新的数据,这些数据到底能帮助企业做什么,如何获取这些想要的数据,企业的大数据战略到底是什么等等一系列的问题,当然,还有更重要的一点,这些数据的应用能在哪些方面发挥作用?

打造大数据管理的两极

   对企业的大数据管理来说,两大系统不容忽视,一是用户管理系统,另一个就是商品(内容)管理系统。这也就是很多企业,尤其是电商企业,会推出用户画像商品标识库的原因,当然,它也是制造企业推动定制化生产数据工厂的重要前提和基础。 然而,要建构企业的用户管理系统和商品(内容)管理系统,需要大量数据的支撑,这些数据到底如何获取,又如何建适合本企业的商业模型呢?


   “
企业要拥抱大数据时代,需要做好数据归集、数据管理、数据应用三个方面的工作,在此基础上,企业才能进行大数据的分析和挖掘,也就是大数据的应用。在苏萌看来,数据收集是帮助企业打破数据孤岛的重要工作,在收集过程中,企业需要建立起第一方数据(企业自身)、第三方数据、CRM数据(客户关系管理数据)、交易数据等在内的多重数据匹配系统,同时构建起针对客户的统一视图,即将企业网站、移动设备、展示广告、线下数据、企业营销数据库、社会化媒体、电子邮件、呼叫中心、MINI-SITE上所有企业相关的数据进行收集和整合。


  
事实上,不只是苏宁,包括华为、TCL等很多企业都在打造包括电商、媒体、金融在内的数据客理平台,由此沉淀数据资产,掌握用户。而奇虎360在建构其金融生态的同时,也提出了要将搜索、电商、社交数据三方面的数据进行整合和管理。


 
由此,数据管理成为数据收集之后的第二项工作,按照苏萌的分析,数据管理需要精确到个体消费者的洞察。它包括数据的存储/仓库,数据标准化,筛选/细分,分析/决策,最终形成客户的群体划分和基于消费偏好的个体画像。


 
在客户的群体划分中,RFM模型非常有用,RRecently(最近),表示客户最近一次购买的时间,为方便统计量,可以停止交易的时间,或者持续交易的时间;FFrequently(频率),表示客户在统计周期内购买的次数;MMonetary Value,表示客户在统计周期内每次购买的平均金额。


  
不难看出,RFM模型是衡量客户价值和客户创利能力的重要工具和手段。它通过一个客户的近期购买行为,购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况,并将用户分层为:一般发展用户、一般价值用户、一般挽留客户、一般保持客户重要价值用户,重要发展用户、重要挽留用户、重要保持客户,进而帮助企业制定不同的营销策略。


   
而在基于消费偏好的个体画像方面,很多用户的个性化数据被提炼出来,包括年龄、性别、职业、兴趣、对品牌的特殊偏好、其关注的领域等等,这也就是常被提及的用户画像或用户标签库。这个标签库的数据,除了需要足够丰富,完整,准确之外,它往往还需要上面提到的用户分层、用户画像、用户的购买预测,本质上就是要用数据挖掘的技术去解决商业上的命题。而这一商业命题,就是数据的应用。  

ITSS助力企业大数据的应用与发展

   ITSS——信息技术服务标准,是在工业和信息化部、国家标准化委的领导和支持下,由ITSS工作组研制的一套IT服务领域的标准库和一套提供IT服务的方法论。