必贝yo:大数据应用如何落地?


 

必贝yo:大数据应用如何落地?

大数据应用的思考模式

其实,在做大数据应用相关的产品的时候,并非像传统的一样,做产品体验,做交互,做架构,而是要落实到一个一个的问题。

讲述自己如何采用大数据的手段进行重点事件的侦破。他们是针对某一个事件,采集了与事件相关的人、物、财等所有的很长一段事件内的信息,进行历时2年的不断分析,才告破。

所以,我们做大数据应用,也是应该聚焦到一个一个的问题,一个一个的场景,而并不像做产品这样,需要提取共性,进行取舍平衡,来服务一群共性的人。所以,大数据应用的思考模式应该是以解决问题为导向,聚焦问题是什么?要达到的效果是什么?

当聚焦到问题是什么的时候,我们才会去寻找支撑我们分析问题的数据。需要的数据内容有哪些?数据来源从什么地方来?

最后就是,拿到这些数据之后,怎么构建数据模型,才能既解决用户的问题,又能提供具体的数据分析内容来证明系统的分析是正确的。

另外,大数据应用的场景,不是功能场景,只能辅助用户进行决策。也就是比如针对一个事件,某人物的嫌疑值是xx%,而并不能说明某人就是犯罪人物。但是,选取要解决的问题的时候,我们的产品经理可以选取具有典型的、有代表性、有价值的问题采用大数据应用进行解决。

实际案例

黑车和出租车的矛盾”的案例。

群众投诉出租车,以及出租车师傅投诉黑车的投诉案件较多,其次是我们可以拿到运管局、交管局的数据。所以问题和数据来源的先决条件决定了该问题的大数据应用是有落地的可能性的,而且在沟通过程中,也确实能解决政府的部分

1)我们在什么阶段要进行黑车打击?

提取过去2年的信访数据,将涉及到“黑车”“出租车”相关的信访案件做一个统计,这样我们就能观察到过去2年内,涉及到“黑车、出租车”相关的信访案件的投诉量的变化情况。其次,我们将运管局的家庭车辆信息以及交管局的车辆卡口的数据都拿过来进这里可以大体说一下是如何做的。

首先是处理车辆的卡口数据,需要鉴别的是车辆是否是黑车,来统计这个时期的黑车数量,当然会结合运管局的家庭车辆拥有信息增强鉴别的可信度。这样,我们就能有2条统计曲线,我们可以看到,“黑车”的信访量会和“黑车”数量呈正相关的关系。

必贝yo云数据(www.bbeyo.com),作为国内基于大数据方面的数据积累、数据分析和标签归类人工智能AI技术驱动的大数据交易平台,支持海量数据的分布式采集、计算及处理,从而以机器学习推动数据交易发展,让数据价值最大化。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉淀在数据交易平台,满足企业对数据分析、数据运营及精准营销等方面的需求。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉垫,实现企业和政府的数字化转型。联系电话:0351-6106588,0351-6106599,公司邮箱[email protected]

公司地址:太原市小店区东中环南段259号亲海国际1幢A座24层2422号,山西奇畅飞科技有限公司

那么我们在对信访内容进行进一步处理,我们通过阅读不同时期的“黑车、出租车”相关的信访内容,了解不同时期的民情对“黑车、出租车”的反应程度。我们可以清楚的看到,当黑车的数量超过某个阈值(A)的时候,出租车师傅对黑车的投诉越来越多,也越来越激烈,当黑车的数量超过某个阈值(B)的时候,群众会对出租车的投诉越来越多,也越来越激烈。

所以,我们可以看到从这里的数据分析就可以得出结论:对于稳定社会,需要将黑车的运营数量控制到【B,A】这个区间

2)我们如何实现精准打击黑车?

。在这里,我们秉持的原则是,打击的黑车对这个家庭的生活不会造成影响或者影响较小。我们会根据卡口的运行数据,构建这些黑车对出租车的影响度的数值,也就是这些黑车的运行,将会对出租车的营收造成影响的影响值。

其次,我们会结合运管局的数据,构建出每一辆黑车对家庭稳定的影响值。实际上我们打击的过程就是综合了营收影响值和家庭稳定影响值进行精准打击。打击这类黑车的同时,将会将黑车的主人信息录入到系统,纳入到“黑车名单”中去,以便实现更加精准的黑车打击。

将黑车的数量打击到【B,A】之间,就能基本上实现稳定社会的效果。但是,由于大数据的数据准确性的问题,所以,其实黑车统计的数量可以再缩小范围【B1,A1】属于区间【B,A】之间。

另外,在实现业务上,在这个时期,我们打击的黑车记录到了“黑车名单”。如果在打击黑车的时期,我们结合卡口数据,再次检测到该人员进行黑车运营,就可以进行直接精准打击,这样就属于无误差的打击。

3)运行效果评估?

在运行构建的大数据应用平台之后,需要结合具体的运行效果,对我们的指标构建进行优化。而且信访是一个漫长的过程,所以也需要一个较长的时间来进行检验和优化。

这里,其实我们是准备对接过网信办的舆论数据。想要将舆论数据对接进来,来进行综合评估我们的运行效果。

信访的业务相关的,无非就是衡量和“黑车、出租车”相关的投诉、舆论等内容的社情情况。所以,最终还是要反馈到业务上来。

总结

目前,由于行业的问题,很多大数据应用相关的还是更加聚集在政府部门、大型企业内部。主要用于提高管理效率和降低运营成本,实际运用到我们普通群众,让我们感知到的大数据应用还非常少。但是我们的生活,的确在因为大数据的应用在变得越来越便利。