国培体会展示之一百六十二


《建模思想与中小学数学教学》听后感

 

                                  尹新华

 

聆听了南京大学李明振博士后所做的《建模思想与中小学数学教学》专题讲座后,感触颇深。在讲座中李明振博士后从数学建模的内涵与特征、数学建模进入中小学数学课程、中小学数学模型思想的基本要求、中小学数学模型思想的教学建议和基于模型思想的中小学数学教学五个方面对模型思想与中小学教学进行了详细阐述。

从教二十年以来,我深刻领悟到“授之以渔”的重要性。因此教师在教学过程中要采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。

一、积累表象,感知数学模型

感性材料是学生建立数学模型的基础,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供平台。如“表内乘法”模型构建的过程就是一个不断感知、积累的过程。首先学习“2-6的乘法口诀”的算法,初步了解乘法的意义,学会能用找规律的方法算出几个相同加数的和,感知乘法口诀的来源及编制的方法;接着采取半扶半放的方式学习“78的乘法口诀”,进一步引导学生感知归纳法、演绎法更广的适用范围;最后学习“9的乘法口诀”,运用以前已有的思想和方法灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了“表内乘法”的内涵,为形成“表内乘法”的模型奠定了坚实的基础。

二、参与研究,构建数学模型

动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。学习过程中学生有时独立思考,有时小组合作学习,有时是独立探索和合作学习相结合,学生在新知探索中充分体验了数学模型的形成过程。

三、联系实际,应用数学模型

从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。如“鸡兔同笼”的问题模型,是通过研究“鸡”、“兔”建立起来的,但建立模型的过程中不可能将所有的同类事物一一列举。因此,教师要带领学生继续扩展考察的范围,分析当情境、数据变化时模型的稳定性。可以出示如下问题让学生分析:“两车共有126人,如果从一辆车8人中选一名代表,从乙车每6人中选一名代表,正好选出17名代表。甲、乙两车各有多少人?”这样,使模型的外延不断得以丰富和拓展。