必贝yo告诉你数据对产业竞合关系


 必贝yo告诉你数据对产业竞合关系

在大数据时代,企业之间的竞合关系发生了变化,原本相互竞争,甚至不愿合作的企业,不得不开始合作,形成新的业态和产业链。

所谓竞合关系,即在竞争中合作,在合作中竞争。它的核心思想主要体现在两个方面:创造价值与争夺价值。创造价值是个体之间相互合作、共创价值的过程;争夺价值则是个体之间相互竞争、分享价值的过程。

竞合的思想就是要求所有参与者共同把蛋糕做大,每个参与者最终分得的部分都会相应增加。

传统的竞合关系以战略为中心,德国宝马汽车公司和戴姆勒公司旗下的奔驰品牌在整车制造领域存在着品牌竞争,但双方不仅共同开发、生产及采购汽车零部件,而且在混合动力技术——领域进行研究合作。

为了能够在激烈的市场竞争中获取优势,两家公司通过竞合战略,互通有无、共享资源,从而在汽车业整体利润下滑的趋势下获得相对较好的收益,最终取得双赢。

在大数据时代,竞合关系是以数据为中心的。数据产业就是从信息化过程累积的数据资源中提取有用信息进行创新,并将这些数据创新赋予商业模式。

这种由大数据创新所驱动的产业化过程具有“提升其他产业利润”的特征,除了能探索新的价值发现、创造与获取方式以谋求本身发展外,还能帮助传统产业突破瓶颈、升级转型,是一种新的竞合关系,而非一般观点的“新兴科技催生的经济业态与原有经济业态存在竞争关系”。

所以,数据产业培育围绕传统经济升级转型,依附传统行业企业共生发展,是最好的发展策略。例如,近年来发展火热的团购,就是数据产业帮助传统餐饮业、旅游业和交通行业的升级转型。提供团购业务的企业在获得收益的同时,也提高了其他传统行业的效益。

但是,传统企业与团购企业也存在着一定的竞争关系。传统企业在与团购企业合作的过程中,也尽力防止自己的线下业务全部转为自己不能掌控的团购企业。

团购网站为了能获得更广的用户群、更大的流量来提升自己的市场地位,除了自身扩展商户和培养网民习惯之外,还纷纷采取了合纵连横的发展战略。

聚划算、京东团购、当当团购、58 团购等纷纷开放平台,吸引了千品网、高朋、满座、窝窝等团购网站的入驻,投奔平台正在成为行业共识。

对于独立团购网站来说,入驻电商平台不仅能带来流量,电商平台在实物销售上的积累对其实物团购也有一定的促进作用。

 

对数据处理模式的新认识:从小众参与到大众协同#

在传统科学中,数据的分析和挖掘都是具有很高专业素养的“企业核心员工”的事情,企业管理的重要目的是如何激励和考核这些“核心员工”。

但是,在大数据时代,基于“核心员工”的创新工作成本和风险越来越大,而基于“专家余(Pro-AmT 的大规模协作日益受到重视,正成为解决数据规模与形式化之间矛盾的重要手段。

大规模生产让数以百计的人买得起商品,但商品本身却是一模一样的。

企业面临这样一个矛盾:定制化的产品更能满足用户的需求,但却非常昂贵;与此同时,量产化的商品价格低廉,但无法完全满足用户的需求。

如果能够做到大规模定制,为大量用户定制产品和服务,则能使产品成本低,又兼具个性化,从而使企业有能力满足要求,但价格又不至于像手工制作那般让人无法承担。

因此,在企业可以负担得起大规模定制带来的高成本的前提下,要真正做到个性化产品和服务,就必须对用户需求有很好的了解,这就需要用户提前参与到产品设计中。

在大数据时代,用户不再仅仅热衷于消费,他们更乐于参与到产品的创造过程中,大数据技术让用户参与创造与分享成果的需求得到实现。

市场上传统的著名品牌越来越重视从用户的反馈中改进产品的后续设计和提高用户体验,例如,“小米”这样的新兴品牌建立了互联网用户粉丝论坛,让用户直接参与到新产品的设计过程之中,充分发挥用户丰富的想象力,企业也能直接了解他们的需求。

大众协同的另一个方面就是企业可以利用用户完成数据的采集,如实时车辆交通数据采集商 Inrix。该公司目前有一亿个手机端用户,Inrix 的软件可以帮助用户避开堵车,为用户呈现路的热量图。

提供数据并不是这个产品的特色,但值得一提的是,Inrix 并没有用交警的数据,这个软件的每位用户在使用过程中会给服务器发送实时数据,如速度和位置,这样每个用户都是探测器。使用该服务的用户越多,Inrix 获得的数据就越多,从而可以提供更好的服务。

 

必贝yo云数据(www.bbeyo.com),作为国内基于大数据方面的数据积累、数据分析和标签归类人工智能AI技术驱动的大数据交易平台,支持海量数据的分布式采集、计算及处理,从而以机器学习推动数据交易发展,让数据价值最大化。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉淀在数据交易平台,满足企业对数据分析、数据运营及精准营销等方面的需求。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉垫,实现企业和政府的数字化转型。联系电话:0351-6106588,0351-6106599,公司邮箱[email protected]

公司地址:太原市小店区东中环南段259号亲海国际1幢A座24层2422号,山西奇畅飞科技有限公司

大数据处理的基本流程:数据抽取与集成+数据分析+数据解释#

大数据的数据来源广泛,应用需求和数据类型都不尽相同,但是最基本的处理流程是一致的。

整个大数据的处理流程可以定义为,在合适工具的辅助下,对广泛异构的数据源进行抽取和集成,将结果按照一定的标准进行统一存储,然后利用合适的数据分析技术对存储的数据进行分析,从中提取有益的知识,并利用恰当的方式将结果展现给终端用户。

具体来讲,大数据处理的基本流程可以分为数据抽取与集成、数据分析和数据解释等步骤。

数据抽取与集成#

大数据的一个重要特点就是多样性,这就意味着数据来源极其广泛,数据类型极为繁杂。这种复杂的数据环境给大数据的处理带来极大的挑战。

要想处理大数据,首先必须对所需数据源的数据进行抽取和集成,从中提取出数据的实体和关系,经过关联和聚合之后采用统一定义的结构来存储这些数据。

在数据集成和提取时,需要对数据进行清洗,保证数据质量及可信性。同时还要特别注意大数据时代数据模式和数据的关系,大数据时代的数据往往是先有数据再有模式,并且模式是在不断的动态演化之中的。

数据抽取和集成技术并不是一项全新的技术,在传统数据库领域此问题就已经得到了比较成熟的研究。随着新的数据源的涌现,数据集成方法也在不断的发展之中。

从数据集成模型来看,现有的数据抽取与集成方式可以大致分为 4 种类型:基于物化或 ETL 方法的引擎、基于联邦数据库或中间件方法的引擎、基于数据流方法的引擎,以及基于搜索引擎的方法。

数据分析#

数据分析是整个大数据处理流程的核心,大数据的价值产生于分析过程。

从异构数据源抽取和集成的数据构成了数据分析的原始数据。根据不同应用的需求可以从这些数据中选择全部或部分进行分析。

小数据时代的分析技术,如统计分析、数据挖掘和机器学习等,并不能适应大数据时代数据分析的需求,必须做出调整。大数据时代的数据分析技术面临着一些新的挑战,主要有以下几点。

数据量大并不一定意味着数据价值的增加,相反这往往意味着数据噪音的增多。#

因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。

大数据时代的算法需要进行调整。#

首先,大数据的应用常常具有实时性的特点,算法的准确率不再是大数据应用的最主要指标。

在很多场景中,算法需要在处理的实时性和准确率之间取得一个平衡。其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。

许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。

最后,在选择算法处理大数据时必须谨慎,当数据量增长到一定规模以后,可以从小量数据中挖掘出有效信息的算法并一定适用于大数据。

数据结果的衡量标准。#

对大数据进行分析比较困难,但是对大数据分析结果好坏的衡量却是大数据时代数据分析面临的更大挑战。

大数据时代的数据量大,类型混杂,产生速度快,进行分析的时候往往对整个数据的分布特点掌握得不太清楚,从而会导致在设计衡量的方法和指标的时候遇到许多困难。

数据解释#

数据分析是大数据处理的核心,但是用户往往更关心对结果的解释。如果分析的结果正确,但是没有采用适当的方法进行解释,则所得到的结果很可能让用户难以理解,极端情况下甚至会引起用户的误解。

数据解释的方法很多,比较传统的解释方式就是以文本形式输出结果或者直接在电脑终端上显示结果。这些方法在面对小数据量时是一种可行的选择。

但是大数据时代的数据分析结果往往也是海量的,同时结果之间的关联关系极其复杂,采用传统的简单解释方法几乎是不可行的。

解释大数据分析结果时,可以考虑从以下两个方面提升数据解释能力。

引入可视化技术。#

可视化作为解释大量数据最有效的手段之一率先被科学与工程计算领域采用。

该方法通过将分析结果以可视化的方式向用户展示,可以使用户更易理解和接受。常见的可视化技术有标签云、历史流、空间信息流等。

让用户能够在一定程度上了解和参与具体的分析过程。#

这方面既可以采用人机交互技术,利用交互式的数据分析过程来引导用户逐步地进行分析,使得用户在得到结果的同时更好地理解分析结果的过程,也可以采用数据溯源技术追溯整个数据分析的过程,帮助用户理解结果。