必贝yo告诉你大数据时代的10个重大变化
对研究范式的新认识:从第三范式到第四范式
2007 年 1 月,图灵奖得主、关系型数据库鼻祖 JimGray 发表演讲,他凭着自己对于人类科学发展特征的深刻洞察,敏锐地指出科学的发展正在进入“数据密集型科学发现范式”——科学史上的“第四范式”。
在他看来,人类科学研究活动已经历过三种不同范式的演变过程。
“第一范式”是指原始社会的“实验科学范式”。18 世纪以前的科学进步均属于此列,其核心特征是对有限的客观对象进行观察、总结、提炼,用归纳法找出其中的科学规律,如伽利略提出的物理学定律。
“第二范式”是指 19 世纪以来的理论科学阶段,以模型和归纳为特征的“理论科学范式”。其核心特征是以演绎法为主,凭借科学家的智慧构建理论大厦,如爱因斯坦提出的相对论、麦克斯方程组、量子理论和概率论等。
“第三范式”是指 20 世纪中期以来的计算科学阶段的“计算科学范式”。面对大量过于复杂的现象,归纳法和演绎法都难以满足科学研究的需求,人类开始借助计算机的高级运算能力对复杂现象进行建模和预测,如天气、地震、核试验、原子的运动等。
然而,随着近年来人类采集数据量的爆炸性增长,传统的计算科学范式已经越来越无力驾驭海量的科研数据了。例如,欧洲的大型粒子对撞机、天文领域的 Pan-STARRS 望远镜每天产生的数据多达几千万亿字节(PB)。很明显,这些数据已经突破了“第三范式”的处理极限,无法被科学家有效利用。
正因为如此,目前正在从“计算科学范式”转向“数据密集型科学发现范式”。
“第四范式”的主要特点是科学研究人员只需要从大数据中查找和挖掘所需要的信息和知识,无须直接面对所研究的物理对象。例如,在大数据时代,天文学家的研究方式发生了新的变化,其主要研究任务变为从海量数据库中发现所需的物体或现象的照片,而不再需要亲自进行太空拍照。
对数据重要性的新认识:从数据资源到数据资产#
在大数据时代,数据不仅是一种“资源”,更是一种重要的“资产”。因此,数据科学应把数据当作一种“资产”来管理,而不能仅仅当作“资源”来对待。也就是说,与其他类型的资产相似,数据也具有财务价值,且需要作为独立实体进行组织与管理。
大数据时代的到来,让“数据即资产”成为最核心的产业趋势。在这个“数据为王”的时代,回首信息产业发展的起起伏伏,我们发现产业兴衰的决定性因素,已不是土地、人力、技术、资本这些传统意义上的生产要素,而是曾经被一度忽视的“数据资产”。
世界经济论坛报告曾经预测称,“未来的大数据将成为新的财富高地,其价值可能会堪比石油”,而大数据之父维克托也乐观地表示,“数据列入企业资产负债表只是时间问题”。
“数据成为资产”是互联网泛在化的一种资本体现,它让互联网不仅具有应用和服务本身的价值,而且具有了内在的“金融”价值。数据不再只是体现于“使用价值”方面的产品,而成为实实在在的“价值”。
目前,作为数据资产先行者的 IT 企业,如苹果、谷歌、IBM、阿里、腾讯、百度等,无不想尽各种方式,挖掘多种形态的设备及软件功能,收集各种类型的数据,发挥大数据的商业价值,将传统意义上的 IT 企业,打造成为“终端+应用+平台+数据”四位一体的泛互联网化企业,以期在大数据时代获取更大的收益。
必贝yo云数据(www.bbeyo.com),作为国内基于大数据方面的数据积累、数据分析和标签归类人工智能AI技术驱动的大数据交易平台,支持海量数据的分布式采集、计算及处理,从而以机器学习推动数据交易发展,让数据价值最大化。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉淀在数据交易平台,满足企业对数据分析、数据运营及精准营销等方面的需求。互联网开放数据、企业内部数据接入,清洗、过滤、脱敏处理后再交易,以数据和算法规则等形态沉垫,实现企业和政府的数字化转型。联系电话:0351-6106588,0351-6106599,公司邮箱[email protected],
公司地址:太原市小店区东中环南段259号亲海国际1幢A座24层2422号,山西奇畅飞科技有限公司
大数据资产的价值的衡量尺度主要有以下 3 个方面的标准。
独立拥有及控制数据资产#
目前,数据的所有权问题在业界还比较模糊。从拥有和控制的角度来看,数据可以分为 Ⅰ 型数据、Ⅱ 型数据和 Ⅲ 型数据。
Ⅰ 型数据主要是指数据的生产者自己生产出来的各种数据,例如,百度对使用其搜索引擎的用户的各种行为进行收集、整理和分析,这类数据虽然由用户产生,但产权却属于生产者,并最大限度地发挥其商业价值。
Ⅱ 型数据又称为入口数据,例如,各种电子商务营销公司通过将自身的工具或插件植入电商平台,来为其提供统计分析服务,并从中获取各类经营数据。虽然这些数据的所有权并不属于这些公司,在使用时也有一些规则限制,但是它们却有着对数据实际的控制权。
相比于前两类数据,Ⅲ 型数据的产权情况比较复杂,它们主要依靠网络爬虫,甚至是黑客手段获取数据。与 Ⅰ 型和 Ⅱ 型数据不同的是,这些公司流出的内部数据放在网上供人付费下载。这种数据在当前阶段,还不能和资产完全画等号。
计量规则与货币资本类似#
大数据要实现真正的资产化,用货币对海量数据进行计量是一个大问题。尽管很多企业都意识到数据作为资产的可能性,但除了极少数专门以数据交易为主营业务的公司外,大多数公司都没有为数据的货币计量做出适当的账务处理。
虽然数据作为资产尚未在企业财务中得到真正的引用,但将数据列入无形资产比较有利。
考虑到研发因素,很多高科技企业都具有较长的投入产出期,可以让那些存储在硬盘上的数据直接进入资产负债表。对于通过交易手段获得的数据,可以按实际支付价款作为入账价值计入无形资产,从而为企业形成有效税盾,降低企业实际税负。
具有资本一般的增值属性#
资本区别于一般产品的特征在于,它具有不断增值的可能性。只有能够利用数据、组合数据、转化数据的企业,他们手中的大数据资源才能成为数据资产。
目前,直接利用数据为企业带来经济利益的方法主要有数据租售、信息租售、数据使能三种模式。
数据租售主要通过对业务数据进行收集、整理、过滤、校对、打包、发布等一系列操作,实现数据內在的价值。
信息租售则通过聚焦行业焦点,收集相关数据,深度整合、萃取及分析,形成完整数据链条,实现数据的资产转化。
数据使能是指类似于阿里这样的互联网公司通过提供大量的金融数据挖掘及分析服务,为传统金融行业难以下手的小额贷款业务开创新的行业增长点。
总而言之,作为信息时代核心的价值载体,大数据必然具有朝向价值本体转化的趋势,而它的“资产化”,或者未来更进一步的“资本化”蜕变,将为未来完全信息化、泛互联网化的商业模式打下基础。
对方法论的新认识:从基于知识到基于数据#
传统的方法论往往是“基于知识”的,即从“大量实践(数据)”中总结和提炼出一般性知识(定理、模式、模型、函数等)之后,用知识去解决(或解释)问题。因此,传统的问题解决思路是“问题→知识→问题”,即根据问题找“知识”,并用“知识”解决“问题”。
然而,数据科学中兴起了另一种方法论——“问题→数据→问题”,即根据“问题”找“数据”,并直接用“数据”(在不需要把“数据”转换成“知识”的前提下)解决“问题”.