序:回头看,匆忙的推出了经济学理论的宏观部分,其实我知道错误很多,原因是自己对经济学知识真的知道的很少,这几天再次回头看原来的写作,发现在货币供应量的估算里,就弄错了一个概念,原本那里的货币发行量应该理解为货币供应量才对的,当然还有别的问题,总体来说,宏观部分的最成功之处,在于推导出了微分方程,并赋予这个微分方程实际意义,以及对凯恩斯乘数的再解释,除此之外的一些东西,都不足为道。
这些天,思绪一直在数据、通胀、分配函数上来回摇摆,但最为关心的还是社会财富分配函数,结果还是一直无法用数学方法证明,所以只能以猜想的形式给出一个函数了。
我们假定人生来就是平等的,哪么我们来考察一个人,我们在前面说过,社会中的每个人,其自由往往是与其自身的财富相关的,也就是每个人的自由度都是他所拥有的财富决定的,比如一个有钱的人,他就可以选择环游世界,他就可以完成比没有钱的人更多的事情,他就有比没有钱的相对穷的人有更多选择的生活方式,也就是说,一个人的自由度是受到个人的财富限制的,这种自由度与自然现象比较的话,就相当于有钱的人具有更大的能量和速率,如一个有钱人出门完全可以选择飞机,他的活动范围是很大的,而没有钱的人,只能步行,他的速度和活动范围显然是很小的,这就是微观层次来看社会的真实状况。
然而,从整个社会看,以上所有这些要受到社会发展水平的限制,如一个古代的皇帝,他最多也只能够乘坐马车出行,其速度显然是受到社会发展水平限制,这种社会发展水平的限制,显然有点类似气体分子的整体温度,哪么我们的猜想就从这里出来了,对气体分子而言,有个麦克斯韦分子速率分布定律,符合这个分配规律的体系是最稳定和最完美的,而对于我们人类社会的人均财富分配而言,也应该有与之类似的分布规律,这样的一个社会才是最稳定最和谐的理想社会,否则就会出现问题,这就是关于社会财富分配定律,我们用数学式子表达为:
这就是理想的人类社会财富分配的统计规律,这个证明对有点数学功底的人应该是可以的,这里M是个与个人经历有关的常数,$代表个人财富。这个应该就是理想社会的财富分配函数。分配函数的曲线将如下图:
最左边的图很尖锐,代表了发展水平比较低的社会财富的理想分配状态;中间的代表了发展水平高一点的社会;最右边的图是发展更高阶段的财富分配图,曲线下面的面积代表了某个财富分配下的人数,哪么我们看,在社会发展水平很低的条件下,曲线很类似于矩形,而我们目前所知道的社会主义社会,其分配制度是绝对平均的,因此是个矩形,与这个曲线符合的很好,这个也许就是为什么我们目前所看到的社会主义容易在发展比较落后的农业国家实现的原因,而随着社会的发展,曲线的形状将会发生变化,一旦整体社会水平发展到很高的阶段,哪么曲线就不会是类似矩形的,这个时候如果还要坚持实行绝对平均分配的话,哪么社会就会是不稳定的状态。
显然,资本主义的两极分化也严重背离了这样的分配曲线,所以也是不稳定的,这就是判别社会主义与资本主义的分配方程,如果社会主义坚持自己是最先进的制度,哪么就应该建立这样的分配制度,保证分配是符合这个曲线的,否则就会走向资本主义。
这就是很早说过的关于资本主义与社会主义的判别方程,就用这个方程作为经济学理论微观部分的序言吧,当然,这个方程与微观部分的联系并不紧密,这个方程也不是微观部分的基础,但是在微观部分讨论的时候,特别是通过微观基础,我们完全可以找到一种分配办法,来达到这个曲线要求的条件,从而走向一个和谐的理想的社会。